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Chapter 04: Discrete Random Variables

Example

Example

Random Variables

Three balls are to be randomly selected without replacement from an
urn containing 20 balls numbered 1 through 20. If we bet that at least
one of the balls that are drawn has a number as large as or larger than
17, what is the probability that we win the bet?

D

@ Let X denote the largest number selected
@ Then X is a random variable taking on one of the values 3,4,---,20

s L2)

4

P{X =18}~ .119

P{X = ,3<i<20 | P{X=17}~.105
(3) P{winning} = P{X > 17}
P{X =20} ~.150 ~.150+.134+.119
P{X =19}~ .134 +.105 = .508
al40

Example

Example

Discrete Random Variables

g

The pmf of a random variable X is given by p(i) = cA’/il,i=0,1,2,---,
where A is some positive value. Find

@ P{X=0}
Q P{X>2}
1= e = B=¢
AO
("] P{X:O}:e”la:e”l
Q P{X>2}=1-P{X<2}
=1-P{X=0}— P{X—1} P{X =2}
=1—e?*—2de —)LZ ]
[ G0z o eram emergu————————— S0

Random Variables

Random Variables

We are often interested in a function of the outcome as opposed to the
actual outcome (e.g., total sum of dice faces, number of coin tosses)

Definition

Random variables are real-valued functions defined on the sample
space.

v

Suppose that we are tossing 3 fair coins. If we let Y denote the number
of heads that appear, then Y is a random variable taking on one of the
values 0, 1, 2, and 3 with respective probabilities

P{Y=0}=P{(T,T,T)} =35

P{Y=1}=P{(T.T,H),(T,H,T),(H, T, T)} =3
P{Y:2}:P{(H7H7T)7( E )7(T7H7H)}:%
P{Y =3} = P{(H,H,H)} = §
2UC

Discrete Random Variables

Discrete Random Variables

Definition

A random variable that can take on at most a countable number of
possible values is said to be discrete.

4

Probability Mass Function
The probability mass function of a discrete random variable X =
p(a) =P{X =a}
If X must assume one of the values x1, Xo, - -
p(xi) >0 fori=1,2,---
p(x)=0  for all other values of x

ép(a):1

, then
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Graphical Representation of a PMF

Px)

Discrete Random Variables

>
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Figure: A graph of the probability mass function of the random variable
representing the sum when two dice are rolled.
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Cumulative Distribution Function ﬁ Expected Value @
The cumulative distribution function F (or simply — the distribution func- The expectation (or expected value) of a discrete RV X
tion) can be expressed in terms of p(a) by E[X] is a weighted average of the possible values that X can take on,
Z p(x) each value being weighted by the probability that X assumes it.
all x<a
EX]= ¥ xp(0)
If X has a probability mass function given by x:p(x)>0 )
p()=} p() =3 pB3) =3 p4)=3
(1)=1 2 o ¢ s Example
0 a<i : Find E[X], where X is the outcome when we roll a fair die.
1 1<a<2 i — 1 1 1 1 1 1\ 7
& = N EX]=1(=)+2(=)+3(=)+4(=)+5(=)+6(=)==
F@={3 2<a<3 J =1(5) +2(5) +2(s) +4(5) +(5) +(3) -
I 3<
? i ; a<4 Analogy with “center of gravity” of a distribution of mass
<a 1l —_—
. ® [ ) [ J
L L L L a -1 0 Al 2
1 2 3 4 y )
Expectation of a Function of a Random Variable Expectation of a Function of a Random Variable
Expectation of a Function of a Random Variable T Expectation of a Function of a RV (contd) @
@ We are given a discrete RV, X, along with its pmf Proposition
@ A function g(X) is itself a discrete RV If X is a discrete RV that takes on one of the values x;,i > 1, with
o Its pmf can be determined from the pmf of X respective probabilities p(x;), then, for any real-valued function g,
@ we can compute E[g(X)] by using the definition of expected value E[g(X)] = Zg(x,)p(x,)
= 1
Example i i I >
Compute E[X?], where X denotes a random variable that takes on any s 2 Gl el s Eg i e E e S Gl
of the values -1, 0, and 1 with respective probabilities ZQ(Xi)P(Xi) = Z Y 9(x)p(x)
P{X=—1}=1 P{X=0}=3 P{X=1}=6 : e
=Y Y ypk)
Let Y = X2. The pmf of Y is given by J i:g(a)=yj
P{Y=1}=P{X=—1}+P{X=1} = 7 =L g():) P(xi)
i:g(x;
P{Y=0}=P{X=0}=23
L= 0= RIXT0) ~ Y 5Pe(X) =) ~ Elg(X)]
Hence, E[X°]=E[Y]=1(7)+0(.3)=.7 J
Expectation of a Linear Function of a RV T Variance @

If aand b are constants, then Is the expectation enough to summarize a distribution function?
E[aX +b] = aE[X] + b | v {_1 with probability 3 S {_30 with probability }

+1  with probability 5 +10  with probability $

Proof

E[aX+b]= ) (ax+b)p(x) The expected value of a RV tells nothing about the variation, or spread,
x:p(x)>0 of its possible values.
= Y apx)+ Y bpx ’

3 0
;p(x)io ( )+LP(X)Z>: ) @ We expect X to take on values around its mean E[X]
= XPp(X
N0 & X:p(x)>op @ To measuring the possible variation of X, we may look at how far
— aE[X]+b apart X would be from its mean, on the average

E[[X—nl],  where u=E[X]

The expected value of a random variable X, E[X], is also referred to as @ It turns out to be mathematically inconvenient to deal with this
the mean or the first moment of X. The quantity E[X"],n> 1, is called quantity
the n" moment of X. /

V.
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Probability Theory: Discrete Random Variables

Variance T Examples W
If X is a RV with mean p, then the variance of X, denoted by Var(X), is Example 1
defined by Calculate Var(X) if X represents the outcome when a fair die is rolled.
Var(X) = E [(x - u)z] o
E[X? =12 ( )+22( )+32( )+42< )+52( )+62< ) =—
An alternative formula for Var(X) 2
Var(X) = E [(x_ u)z] Var(X) = E[X2] - ( E[X] o (V.o
. ) 6 2 12
= E[X°—2uX+
E[X2 2” e X“ ] 2 Example 2
= £l 2] o X N Calculate Var(Y) and Var(Z) if
= EX]-2p"+p" = E[XT] —p —1  with probability |80 with probability 1
2 -
— E[X?] - (E[X]) +1  with probability 5 +10  with probability $
‘ 21 _ 2(1 2(1) _ 21 _ 2(1 2(3) _
Analogy: The variance represents the moment of inertia of a distribution EY=(=1) (5) +1 (i) =1 E[Z7]=(=30) (1) +10 (Z) =300
of mass around its center of gravity. Var(Y)=1-0%=1 Var(Z) = 300 — 0% = 300
13740
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Probability Theory: Discrete Random Variables

Variance Probability Theory: Discrete Random Variables

Variance of a Linear Function of a RV T Standard Deviation of a RV T

If aand b are constants, then
Var(aX + b) = & Var(X)

Proof
Let u = E[X] and Y = aX + b, then Definition
E[Y]=ElaX+b]=aE[X]+b=au+b The square root of the Var(X) is called the standard deviation of X, and
Therefore, we denote it by SD(X).
Var(aX + b) = Var(Y)
= E[(Y-E[V)?]
— E[((aX+b) ~ (au+b))’?]
= E[(ax—au)?] = E[2(X - n)?]
=2 [( - u)z] = &Var(X)
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SD(X) = v/Var(X)
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Probability Theory: Discrete Random Variables

Expected Value of Sums of Random Variables Probability Theory: Discrete Random Variables

Expected Value of Sums of Random Variables

Expected Value of Sums of RVs T Expected Value of Sums of RVs (cont'd) @
Sum of RVs Z[?(? OSItIOIH ighted f the values X(s), s € S, with X(s)
. - . o equals a weighted average of the values X(s), s € S, wi s
@ Consider a probability experiment whose sample space S is either . I . .
finite or countably infinite weighted by the probability that S)I(S the outcome of the experiment
@ Fora RV X, let X(s) denote the value of X when s € S'is the SEZ:S (s)p(s) J
outcome of the experiment Proof
o If X'and Y are both RVs, then so is their sum —Z =X +Y Suppose that the distinct values of X are x;,i > 1. For each i, let S; be
Z(s) = X(s)+ Y(s) the event that X is equal to x;. Thatis, S; = {s: X(s) = x;}. Then,

) . L. ) . E[X]—ZX,P{X—X,}
@ Suppose that the experiment consists of flipping a coin 5 times i

@ Suppose X is the number of heads in the first 3 flips = ZX/'P( = in Z p(s)
@ Suppose Y is the number of heads in the final 2 flips ' LS
@ Let Z= X+ Y. For the outcome s = (h,t, h,t, h), a ),:sgé,-Xip(S) B seZsX(S)p(S)
X(s)=2 Y(s)=1 Z(s)=X(s)+Y(s)=3 | where the final equality follows because Sy, Sy, -+ are mutually exclusive

events whose union is S.
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Probability Theory: Discrete Random Variables

Expected Value of Sums of Random Variables Probability Theory: Discrete Random Variables

Properties of the Cumulative Distribution Function

Expected Value of Sums of RVs (cont'd) T Properties of the Cumulative Distribution Function @
Corollary
For random variables X1, X, -, X,
n n
E {Z x,] =Y E[X] For the distribution function F of X,
= = J @ F is a nondecreasing function; that is, if a < b, then F(a) < F(b)
Proof

o lim F(b)=1
.

Let Z=Y", X. Then, o lim F(b)=0
i

E[Z]=) Z(s)p(s)

@ F is right continuous. That is, for any b and any decreasing
ses sequence by, n > 1, that converges to b, lim F(bn) = F(b)
= X (X(8)+ Xe(8) + -+ Xa(s) ) ()

seS
= ):SX1(S)p(S)+ ZSXz(S)p(S)+~~+ ZSXn(S)p(S)

= E[Xi]+ E[Xo] +---+ E[X]
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Probability Theory: Discrete Random Variables

Properties of the Cumulative Distribution Function Properties of the Cumulative Distribution Function
Answering Probability Questions in Terms of F ﬁ Example @
P{a<X < b} va<b The distribution function of the random variable X is given by

{X<b={X<alu{a<X<b} O el £t
P{X <b}=P{X<al+P{a<X<b} X gex<i ik
F(b)= F(a)+ P{a< X < b} 2 Y -
= Fix)=¢2 1<x<2
P{a< X <b}=F(b)-F(a) ) 1 o2<x<3 ;: —
1 3<x
P{X < b} -
P{X<b}:P<Iim{X<b—1}) : . . S
ne W Compute - ]
:IimP(ng—l) Q P{X <3}
ne n Q P{X=1}
. 1 Q P{X>}}
*n'i*lf(b‘ﬁ) Q P2<X<4)}
21/40 22140

Probability Theory: Discrete Random Variables Properties of the Cumulative Distribution Function Probability Theory: Discrete Random Variables
Example (cont'd) ﬁ

Solution

Common Discrete Probability Distributions

Common Discrete Probability Distributions @

n 1 )

@ P(x<3}=imF(3-1)=4

Q@ PIX=1}=P{X<1}-P{X<1} K @ Bernoulli Distribution
= F(1)—,|,ij;"_<1 - },) @ Binomial Distribution

— % ,% — (1_5 . ) ) @ Poisson Distribution
' ’ ' @ Geometric Distribution
Q P{X>%}:1—P{X§%}

=1-F(3)
_1_3
1= 1

Q P{2<X<4}=F(4)-F(2)

—{_14_1

1 12 )
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Probability Theory: Discrete Random Variables

Common Discrete Probability Distributions

Probability Theory: Discrete Random Variables Common Discrete Probability Distributions

Bernoulli Distribution T Binomial Distribution W

The Bernoulli Random Variable

@ Suppose that a trial, or an experiment, whose outcome can be
classified as either a success or a failure is performed

@ A Bernoulli RV, X, with parameter p has the following pmf @ If X represents the number of successes that occur in the n trials,
p(1)=P{X=1}=p then X is said to be a binomial RV with parameters (n,p). Its pmf is

p(0) = P{X =0} =q=1-p o) = (7)et—prr7  i=0tm
where p,0 < p <1, is the probability that the trial is a success

The Binomial Random Variable

@ Suppose that nindependent trials, each of which is a Bernoulli trial
with parameter p, are to be performed.

oo n
2 N n ir4 _ \N—i
EX]=0x(1-p)+1xp var(X) = E[X?] — (E[X]) i:ZOP(’)—i:ZO(,)P“ P)
. , =p-p° =(p+(1-p)"
E[X]=0"x(1-p)+1°xp =p(1-p) —qn
=P =pq =1

S
Binomial Distribution k3

Common Discrete Probability Distributions

Common Discrete Probability Distributions
Binomial Distribution T

It is known that screws produced by a certain company will be defective
with probability .01, independently of each other. The company sells the
screws in packages of 10 and offers a money-back guarantee that at
most 1 of the 10 screws is defective. What proportion of packages sold
must the company replace?

Solution

If X is the number of defective screws in a package, then X is a binomial
RV with parameters (10, .01).

P{X>1}=1-P{X=0}-P{X=1}

1 (‘00) (.01)°(.99)0 — (110)(.01)1(.99)9

=.004
Thus, only .4 percent of the packages will have to be replaced.
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Binomial Distribution &

k ok (M i
EX*=Yi (i>p’q””
i=0

Common Discrete Probability Distributions

Y ~ Binomial(n—1,p)

E[X] = npE [(Y+1)°]
= npE[1]
=np

E[X?] = npE[Y +1]
=np((n—1)p+1)

ik— i) i—1 n—i
=L

2 2 2
=nf (7 1)p’1q"’ reemw +np2
= - Var(X) = E[X?] - (E[X])
—nan U+ 1(n 1)%“ - = np—np?
/ =np(1-p)
_an[Y+1k1] - npg

A communication system consists of n components, each of which will,
independently, function with probability p. The total system will be able
to operate effectively if at least one-half of its components function.
For what values of p is a 5-component system more likely to operate
effectively than a 3-component system?

Solution
The number of functioning components is a binomial RV with parameters
(n,p). The 5-component system is better if

P{effective 5-comp. sys.} > P{effective 3-comp. sys.}
5 5 3
(3)7° -0+ (3)r =014 (3) 1 )7
which reduces to
3(p—1)%(2p—1)>0 =p>1

Common Discrete Probability Distributions
Binomial Distribution &
Binomial RV as a sum of n independent identical Bernoulli RVs
X=Xi+Xo+---+Xpn (X ~ Binomial(n, p), X; ~ Bernoulli(p), indep.X;’s)
E[X] = E[Xi] + E[Xz] +--- + E[X7]
=p+p+-+p =Pq+pq+---+pq
=np =npq
Computing the binomial distribution function

Suppose that X ~ Binomial(n,p). The key to computing its distribution
function

Var(X) = Var(Xj) + Var(Xz) + - - - + Var(Xp)

P{X<i}= Z’: (7)p’(1—p)"”' i=0,1,--,n

k=0

is to start with P{X = 0} and then to compute P{X = k+1} from P{X =
k} using the relationship

kify_ P n—k
P{X7k+1}71_pk P{X =k}




Poisson Distribution

Common Discrete Probability Distributions

g

The Poisson Random Variable

A random variable X that takes on one of the values 0,1,2,--- is said to
be a Poisson random variable with parameter A if, for some A > 0,

1
p(i):P{X:i}:e’l/}_—l i=0,1,2,
IS @ /'U
YP()=3e l,‘|

i=0 i=0
o0 i
_ A
=L
=e”167L
=1
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Poisson Distribution

Common Discrete Probability Distributions

g

Examples of RVs that generally obey the Poisson probability law
@ The number of misprints on a page (or a group of pages) of a book
@ The number of wrong telephone numbers that are dialed in a day
@ The number of customers entering a post office on a given day

@ The number of vacancies occurring during a year in the federal
judicial system

@ The number of a-particles discharged in a fixed period of time from
some radioactive material

The value A will usually be determined empirically |

(©2022 Prof. Hicham Elmongui
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Common Discrete Probability Distributions
Poisson Distribution T
Example 3

Consider an experiment that consists of counting the number of a parti-
cles given off in a 1-second interval by 1 gram of radioactive material. If
we know from past experience that, on the average, 3.2 such o particles
are given off, what is a good approximation to the probability that no
more than 2 « particles will appear?

@ Think of the gram of radioactive material as consisting of a large
number n of atoms, each of which has probability of 3.2/n of
disintegrating and sending off an o particle during the second
considered

@ The number of « particles given off will be a Poisson random
variable with parameter A = 3.2

2
P{X <2} =e 32132321 %e*”

~.3799
62022 ot eram Emenou
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Poisson Distribution

Poisson RV as an approximation to binomial RV

The Poisson RV with parameter A = np may be used as an approximation
for a binomial RV with parameters (n, p) when nis large and p is small
enough so that np is of moderate size.

Common Discrete Probability Distributions

>

pix=i)= (7)ol -pp

~wm(3) (-3)”

_ n(n—1)---(n—i+1) " il " (1=2/n)"
ni it (1=A/n)
for large n, small p, moderate np
Al e

z1><ﬂ><T =@

V.
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Pty Moo oscae andom varaves |
Poisson Distribution
Example 1

Suppose that the number of typographical errors on a single page of our
textbook has a Poisson distribution with parameter 4 = 1/2. Calculate
the probability that there is at least one error on page 76.

V.

Letting X denote the number of errors on this page
P{X>1}=1-P{X=0}=1-c"2~.393

Example 2

Suppose that the probability that an item produced by a certain machine
will be defective is .1. Find the probability that a sample of 10 items will
contain at most 1 defective item.

(100)(.1)0(.9)1o+ (110)(.1)1(.9)9 — 7361

V.

Common Discrete Probability Distributions

>

e ' +e1~.7358
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Common Discrete Probability Distributions

Poisson Distribution @
Binomial Approximation o [2e—A) i
27 €
A=np EXf] = iz):é il
qg=1 = jeA) i1
EX]=np =2 :’1,; (i—1)
Var(X) = npq .:)L J Ai (i+1)e A
Ex -y =
_/':0 i Anf Anf
. > je A > e A
= e ALt =2 Zje - +Z :
_leglml._j :/l(l+1) 2
=y Var(X) = E[X?] - (E[X])
e Het =2
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Probability Theory: Discrete Random Variables

Computing the Poisson distribution function

Suppose that X ~ Poisson(1). The key to computing its distribution
function .

i —)Ll

P{X<i}= Z i

is to start with P{X = 0} and then to compute P{X =k +1} from P{X =
k} using the relationship

PIX=k+1}= 2=

i=0,1,2, -

THPIX=k)

Common Discrete Probability Distributions

Poisson Distribution T
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Probability Theory: Discrete Random Variables

Example

An urn contains N white and M black balls. Balls are randomly selected,
one at a time, until a black one is obtained. If we assume that each
selected ball is replaced before the next one is drawn, what is the
probability that

@ exactly ndraws are needed?

@ at least n draws are needed?

Common Discrete Probability Distributions

Geometric Distribution T

@ Let X denote the number of draws needed to select a black ball

@ X ~ Geometric(p), p=M/(M+N), g=N/(M+N)
N \"" M MN"-1
_ —An-1p—
L) b= = p_(M-i—N) MIN~ (M Ny

N \"™
PX>nj=Y ¢ Tp=g" ( )
9 P{Xzn} o P M+N

©2022 Prof. Hicham Elmongui 39/40

Geometric Distribution T

Common Discrete Probability Distributions

The Geometric Random Variable

Suppose that independent trials, each having a probability p, 0 < p < 1,
of being a success, are performed until a success occurs. If we let X
equal the number of trials required, then

PiX=i}=q¢"'p q=1-p, =12
= AR S 4
Y PIX=i}=)d'p PX<i}=Y ¢
i=0 i=1 A=
=1L _p-qp
-q
:B 1 i
p :M
=1 2
_17ql

Probability Theory: Discrete Random Variables

Common Discrete Probability Distributions

Geometric Distribution @
E[X] = )i iq~'p E[X?] = i 2q'p
:f(lqm)q =i(l—1+1)2qi’1p
i=1 i=1
~Y.(G+1dp =Y (+17dp
Jj=0 Jj=0
:)oi/q’m):q’p =): q’p+2):/q’p+2q'p
j=0 j=0 j=0 j=0
= quq’* p+ Zq”p = quzq” p+2q2jq’* p+):q”1p
j=1 i=1 j=1 j=1 i=1
= gE[X]+1 = gE[X?] +2qE[X] +1
=1/(1-9) =(29/p+1)/(1-q)
EXI=1/p =(q+1)/p°
| var(X) = EDX] - (E[X))® =g/ ]
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