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Chapter 04: Discrete Random Variables

Probability Theory: Discrete Random Variables Random Variables

Random Variables
We are often interested in a function of the outcome as opposed to the
actual outcome (e.g., total sum of dice faces, number of coin tosses)

Definition
Random variables are real-valued functions defined on the sample
space.

Suppose that we are tossing 3 fair coins. If we let Y denote the number
of heads that appear, then Y is a random variable taking on one of the
values 0, 1, 2, and 3 with respective probabilities

P{Y = 0}= P{(T ,T ,T )}= 1
8

P{Y = 1}= P{(T ,T ,H),(T ,H,T ),(H,T ,T )}= 3
8

P{Y = 2}= P{(H,H,T ),(H,T ,H),(T ,H,H)}= 3
8

P{Y = 3}= P{(H,H,H)}= 1
8
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Example
Example
Three balls are to be randomly selected without replacement from an
urn containing 20 balls numbered 1 through 20. If we bet that at least
one of the balls that are drawn has a number as large as or larger than
17, what is the probability that we win the bet?

Let X denote the largest number selected
Then X is a random variable taking on one of the values 3,4, · · · ,20

P{X = i}=

(
i−1

2

)

(
20
3

) ,3≤ i ≤ 20

P{X = 20} ≈ .150
P{X = 19} ≈ .134

P{X = 18} ≈ .119
P{X = 17} ≈ .105

P{winning}= P{X ≥ 17}
≈ .150+ .134+ .119

+ .105 = .508
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Discrete Random Variables

Definition
A random variable that can take on at most a countable number of
possible values is said to be discrete.

Probability Mass Function

The probability mass function of a discrete random variable X ,
p(a) = P{X = a}

If X must assume one of the values x1,x2, · · · , then
p(xi)≥ 0 for i = 1,2, · · ·
p(x) = 0 for all other values of x

∞

∑
i=1

p(a) = 1
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Example
Example

The pmf of a random variable X is given by p(i) = cλ i/i!, i = 0,1,2, · · · ,
where λ is some positive value. Find

1 P{X = 0}
2 P{X > 2}

1 =
∞

∑
i=0

p(i) = c
∞

∑
i=0

λ i

i!
= ceλ ⇒ c = e−λ

1 P{X = 0}= e−λ λ 0

0!
= e−λ

2 P{X > 2} = 1−P{X ≤ 2}
= 1−P{X = 0}−P{X = 1}−P{X = 2}
= 1− e−λ −λe−λ − λ 2e−λ

2
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Graphical Representation of a PMF

Figure: A graph of the probability mass function of the random variable
representing the sum when two dice are rolled.
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Cumulative Distribution Function
The cumulative distribution function F (or simply – the distribution func-
tion) can be expressed in terms of p(a) by

F (a) = ∑
all x≤a

p(x)

If X has a probability mass function given by
p(1) = 1

4 p(2) = 1
2 p(3) = 1

8 p(4) = 1
8

F (a) =





0 a < 1
1
4 1≤ a < 2
3
4 2≤ a < 3
7
8 3≤ a < 4
1 4≤ a
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Expected Value
The expectation (or expected value) of a discrete RV X
E [X ] is a weighted average of the possible values that X can take on,
each value being weighted by the probability that X assumes it.

E [X ] = ∑
x :p(x)>0

xp(x)

Example
Find E [X ], where X is the outcome when we roll a fair die.

E [X ] = 1
(

1
6

)
+2
(

1
6

)
+3
(

1
6

)
+4
(

1
6

)
+5
(

1
6

)
+6
(

1
6

)
=

7
2

Analogy with “center of gravity” of a distribution of mass
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Expectation of a Function of a Random Variable
We are given a discrete RV, X , along with its pmf
A function g(X ) is itself a discrete RV
Its pmf can be determined from the pmf of X
we can compute E [g(X )] by using the definition of expected value

Example

Compute E [X 2], where X denotes a random variable that takes on any
of the values -1, 0, and 1 with respective probabilities

P{X =−1}= .1 P{X = 0}= .3 P{X = 1}= .6

Let Y = X 2. The pmf of Y is given by

P{Y = 1}= P{X =−1}+P{X = 1}= .7
P{Y = 0}= P{X = 0}= .3

Hence, E [X 2] = E [Y ] = 1(.7)+0(.3) = .7
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Expectation of a Function of a RV (cont’d)
Proposition
If X is a discrete RV that takes on one of the values xi , i ≥ 1, with
respective probabilities p(xi), then, for any real-valued function g,

E [g(X )] = ∑
i

g(xi)p(xi)

Proof: by grouping all terms having the same value of g(xi)

∑
i

g(xi)p(xi) = ∑
j

∑
i:g(xi )=yj

g(xi)p(xi)

= ∑
j

∑
i:g(xi )=yj

yjp(xi)

= ∑
j

yj ∑
i:g(xi )=yj

p(xi)

= ∑
j

yjP(g(X ) = yj) = E [g(X )]
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Expectation of a Linear Function of a RV
If a and b are constants, then

E [aX +b] = aE [X ]+b

Proof
E [aX +b] = ∑

x :p(x)>0
(ax +b)p(x)

= ∑
x :p(x)>0

axp(x)+ ∑
x :p(x)>0

bp(x)

= a ∑
x :p(x)>0

xp(x)+b ∑
x :p(x)>0

p(x)

= aE [X ]+b

The expected value of a random variable X , E [X ], is also referred to as
the mean or the first moment of X . The quantity E [X n],n ≥ 1, is called
the nth moment of X .
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Variance

Is the expectation enough to summarize a distribution function?

Y =

{
−1 with probability 1

2

+1 with probability 1
2

Z =

{
−30 with probability 1

4

+10 with probability 3
4

The expected value of a RV tells nothing about the variation, or spread,
of its possible values.

We expect X to take on values around its mean E [X ]

To measuring the possible variation of X , we may look at how far
apart X would be from its mean, on the average

E [|X −µ|], where µ = E [X ]

It turns out to be mathematically inconvenient to deal with this
quantity
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Variance

If X is a RV with mean µ, then the variance of X , denoted by Var(X ), is
defined by

Var(X ) = E
[
(X −µ)2

]

An alternative formula for Var(X)

Var(X ) = E
[
(X −µ)2

]

= E [X 2−2µX +µ2]

= E [X 2]−2µE [X ]+µ2

= E [X 2]−2µ2 +µ2 = E [X 2]−µ2

= E [X 2]−
(

E [X ]
)2

Analogy: The variance represents the moment of inertia of a distribution
of mass around its center of gravity.
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Examples
Example 1
Calculate Var(X ) if X represents the outcome when a fair die is rolled.

E [X 2] = 12
(

1
6

)
+22

(
1
6

)
+32

(
1
6

)
+42

(
1
6

)
+52

(
1
6

)
+62

(
1
6

)
=

91
6

Var(X ) = E [X 2]−
(

E [X ]

)2

=
91
6
−
(

7
2

)2

=
35
12

Example 2
Calculate Var(Y ) and Var(Z ) if

Y =

{
−1 with probability 1

2

+1 with probability 1
2

Z =

{
−30 with probability 1

4

+10 with probability 3
4

E [Y 2] = (−1)2
(

1
2

)
+12

(
1
2

)
= 1

Var(Y ) = 1−02 = 1

E [Z 2] = (−30)2
(

1
4

)
+102

(
3
4

)
= 300

Var(Z ) = 300−02 = 300
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Variance of a Linear Function of a RV
If a and b are constants, then

Var(aX +b) = a2Var(X )

Proof
Let µ = E [X ] and Y = aX +b, then

E [Y ] = E [aX +b] = aE [X ]+b = aµ +b

Therefore,
Var(aX +b) = Var(Y )

= E
[(

Y −E [Y ]
)2
]

= E
[(
(aX +b)− (aµ +b)

)2
]

= E
[
(aX −aµ)2

]
= E

[
a2(X −µ)2

]

= a2E
[
(X −µ)2

]
= a2Var(X )
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Standard Deviation of a RV

Definition
The square root of the Var(X ) is called the standard deviation of X , and
we denote it by SD(X ).

SD(X ) =
√

Var(X )
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Expected Value of Sums of RVs

Sum of RVs
Consider a probability experiment whose sample space S is either
finite or countably infinite
For a RV X , let X (s) denote the value of X when s ∈ S is the
outcome of the experiment
If X and Y are both RVs, then so is their sum — Z = X +Y

Z (s) = X (s)+Y (s)

Suppose that the experiment consists of flipping a coin 5 times
Suppose X is the number of heads in the first 3 flips
Suppose Y is the number of heads in the final 2 flips
Let Z = X +Y . For the outcome s = (h, t ,h, t ,h),

X (s) = 2 Y (s) = 1 Z (s) = X (s)+Y (s) = 3
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Expected Value of Sums of RVs (cont’d)
Proposition
E [X ] equals a weighted average of the values X (s), s ∈ S, with X (s)
weighted by the probability that s is the outcome of the experiment

∑
s∈S

X (s)p(s)

Proof
Suppose that the distinct values of X are xi , i ≥ 1. For each i , let Si be
the event that X is equal to xi . That is, Si = {s : X (s) = xi}. Then,

E [X ] = ∑
i

xiP{X = xi}

= ∑
i

xiP(Si) = ∑
i

xi ∑
s∈Si

p(s)

= ∑
i

∑
s∈Si

xip(s) = ∑
s∈S

X (s)p(s)

where the final equality follows because S1,S2, · · · are mutually exclusive
events whose union is S.
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Expected Value of Sums of RVs (cont’d)
Corollary
For random variables X1,X2, · · · ,Xn,

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E [Xi ]

Proof
Let Z = ∑n

i=1 Xi . Then,

E [Z ] = ∑
s∈S

Z (s)p(s)

= ∑
s∈S

(
X1(s)+X2(s)+ · · ·+Xn(s)

)
p(s)

= ∑
s∈S

X1(s)p(s)+ ∑
s∈S

X2(s)p(s)+ · · ·+ ∑
s∈S

Xn(s)p(s)

= E [X1]+E [X2]+ · · ·+E [Xn]
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Properties of the Cumulative Distribution Function

For the distribution function F of X ,
F is a nondecreasing function; that is, if a < b, then F (a)≤ F (b)
lim
b→∞

F (b) = 1

lim
b→−∞

F (b) = 0

F is right continuous. That is, for any b and any decreasing
sequence bn, n ≥ 1, that converges to b, lim

n→∞
F (bn) = F (b)

c©2022 Prof. Hicham Elmongui 20 / 40

Probability Theory: Discrete Random Variables Properties of the Cumulative Distribution Function

Answering Probability Questions in Terms of F

P{a < X ≤ b} ∀a < b

{X ≤ b}= {X ≤ a}∪{a < X ≤ b}
P{X ≤ b}= P{X ≤ a}+P{a < X ≤ b}

F (b) = F (a)+P{a < X ≤ b}
P{a < X ≤ b}= F (b)−F (a)

P{X < b}

P{X < b}= P

(
lim
n→∞

{
X ≤ b− 1

n

})

= lim
n→∞

P
(

X ≤ b− 1
n

)

= lim
n→∞

F
(

b− 1
n

)

c©2022 Prof. Hicham Elmongui 21 / 40

Probability Theory: Discrete Random Variables Properties of the Cumulative Distribution Function

Example

The distribution function of the random variable X is given by

F (x) =





0 x < 0
x
2 0≤ x < 1
2
3 1≤ x < 2
11
12 2≤ x < 3
1 3≤ x

Compute
1 P{X < 3}
2 P{X = 1}
3 P{X > 1

2}
4 P{2 < X ≤ 4}
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Example (cont’d)
Solution

1 P{X < 3}= lim
n→∞

F
(

3− 1
n

)
= 11

12

2 P{X = 1}= P{X ≤ 1}−P{X < 1}
= F (1)− lim

n→∞
F
(

1− 1
n

)

= 2
3 − 1

2 = 1
6

3 P{X > 1
2}= 1−P{X ≤ 1

2}
= 1−F (1

2)

= 1− 1
4 = 3

4

4 P{2 < X ≤ 4}= F (4)−F (2)

= 1− 11
12 = 1

12
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Common Discrete Probability Distributions

Bernoulli Distribution
Binomial Distribution
Poisson Distribution
Geometric Distribution
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Bernoulli Distribution

The Bernoulli Random Variable
Suppose that a trial, or an experiment, whose outcome can be
classified as either a success or a failure is performed
A Bernoulli RV, X , with parameter p has the following pmf

p(1) = P{X = 1}= p
p(0) = P{X = 0}= q = 1−p

where p,0≤ p ≤ 1, is the probability that the trial is a success

E [X ] = 0× (1−p)+1×p
= p

E [X 2] = 02× (1−p)+12×p
= p

Var(X ) = E [X 2]−
(

E [X ]
)2

= p−p2

= p(1−p)
= pq
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Binomial Distribution

The Binomial Random Variable
Suppose that n independent trials, each of which is a Bernoulli trial
with parameter p, are to be performed.
If X represents the number of successes that occur in the n trials,
then X is said to be a binomial RV with parameters (n,p). Its pmf is

p(i) =
(

n
i

)
pi(1−p)n−i i = 0,1, · · · ,n

∞

∑
i=0

p(i) =
n

∑
i=0

(
n
i

)
pi(1−p)n−i

=
(
p+(1−p)

)n

= 1n

= 1
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Binomial Distribution

It is known that screws produced by a certain company will be defective
with probability .01, independently of each other. The company sells the
screws in packages of 10 and offers a money-back guarantee that at
most 1 of the 10 screws is defective. What proportion of packages sold
must the company replace?

Solution
If X is the number of defective screws in a package, then X is a binomial
RV with parameters (10, .01).

P{X > 1}= 1−P{X = 0}−P{X = 1}

= 1−
(

10
0

)
(.01)0(.99)10−

(
10
1

)
(.01)1(.99)9

= .004
Thus, only .4 percent of the packages will have to be replaced.
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Binomial Distribution
A communication system consists of n components, each of which will,
independently, function with probability p. The total system will be able
to operate effectively if at least one-half of its components function.
For what values of p is a 5-component system more likely to operate
effectively than a 3-component system?

Solution
The number of functioning components is a binomial RV with parameters
(n,p). The 5-component system is better if

P{effective 5-comp. sys.}> P{effective 3-comp. sys.}
(

5
3

)
p3(1−p)2 +

(
5
4

)
p4(1−p)+p5 >

(
3
2

)
p2(1−p)+p3

which reduces to
3(p−1)2(2p−1)> 0 ⇒ p > 1

2
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Binomial Distribution

E [X k ] =
n

∑
i=0

ik
(

n
i

)
piqn−i

=
n

∑
i=1

ik
(

n
i

)
piqn−i

=
n

∑
i=1

ik
n!

i!(n− i)!
piqn−i

= np
n

∑
i=1

ik−1 (n−1)!
(i−1)!(n− i)!

pi−1qn−i

= np
n

∑
i=1

ik−1
(

n−1
i−1

)
pi−1qn−i

= np
n−1

∑
j=0

(j +1)k−1
(

n−1
j

)
pjqn−1−j

= npE
[
(Y +1)k−1

]

Y ∼ Binomial(n−1,p)

E [X ] = npE
[
(Y +1)0

]

= npE [1]
= np

E [X 2] = npE [Y +1]
= np

(
(n−1)p+1

)

= n2p2−np2 +np

Var(X ) = E [X 2]−
(

E [X ]
)2

= np−np2

= np(1−p)
= npq
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Binomial Distribution
Binomial RV as a sum of n independent identical Bernoulli RVs

X = X1 +X2 + · · ·+Xn
(
X ∼ Binomial(n,p),Xi ∼ Bernoulli(p), indep.Xi ’s

)

E [X ] = E [X1]+E [X2]+ · · ·+E [Xn]

= p+p+ · · ·+p
= np

Var(X ) = Var(X1)+Var(X2)+ · · ·+Var(Xn)

= pq+pq+ · · ·+pq
= npq

Computing the binomial distribution function
Suppose that X ∼ Binomial(n,p). The key to computing its distribution
function

P{X ≤ i}=
i

∑
k=0

(
n
i

)
pi(1−p)n−i i = 0,1, · · · ,n

is to start with P{X = 0} and then to compute P{X = k +1} from P{X =
k} using the relationship

P{X = k +1}= p
1−p

n−k
k +1

P{X = k}
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Poisson Distribution

The Poisson Random Variable
A random variable X that takes on one of the values 0,1,2, · · · is said to
be a Poisson random variable with parameter λ if, for some λ > 0,

p(i) = P{X = i}= e−λ λ i

i!
i = 0,1,2, · · ·

∞

∑
i=0

p(i) =
∞

∑
i=0

e−λ λ i

i!

= e−λ
∞

∑
i=0

λ i

i!

= e−λ eλ

= 1
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Poisson Distribution
Poisson RV as an approximation to binomial RV
The Poisson RV with parameter λ = np may be used as an approximation
for a binomial RV with parameters (n,p) when n is large and p is small
enough so that np is of moderate size.

P{X = i}=
(

n
i

)
pi(1−p)n−i

=
n!

(n− i)!i!

(
λ
n

)i(
1− λ

n

)n−i

=
n(n−1) · · ·(n− i +1)

ni × λ i

i!
× (1−λ/n)n

(1−λ/n)i

for large n, small p, moderate np

≈ 1× λ i

i!
× e−λ

1
= e−λ λ i

i!
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Poisson Distribution

Examples of RVs that generally obey the Poisson probability law
The number of misprints on a page (or a group of pages) of a book
The number of wrong telephone numbers that are dialed in a day
The number of customers entering a post office on a given day
The number of vacancies occurring during a year in the federal
judicial system
The number of α-particles discharged in a fixed period of time from
some radioactive material

The value λ will usually be determined empirically
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Poisson Distribution
Example 1
Suppose that the number of typographical errors on a single page of our
textbook has a Poisson distribution with parameter λ = 1/2. Calculate
the probability that there is at least one error on page 76.

Letting X denote the number of errors on this page

P{X ≥ 1}= 1−P{X = 0}= 1− e−1/2 ≈ .393

Example 2
Suppose that the probability that an item produced by a certain machine
will be defective is .1. Find the probability that a sample of 10 items will
contain at most 1 defective item.

(
10
0

)
(.1)0(.9)10+

(
10
1

)
(.1)1(.9)9 = .7361

e−1 + e−1 ≈ .7358
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Poisson Distribution
Example 3
Consider an experiment that consists of counting the number of α parti-
cles given off in a 1-second interval by 1 gram of radioactive material. If
we know from past experience that, on the average, 3.2 such α particles
are given off, what is a good approximation to the probability that no
more than 2 α particles will appear?

Think of the gram of radioactive material as consisting of a large
number n of atoms, each of which has probability of 3.2/n of
disintegrating and sending off an α particle during the second
considered
The number of α particles given off will be a Poisson random
variable with parameter λ = 3.2

P{X ≤ 2}= e−3.2 +3.2e−3.2 +
3.22

2
e−3.2

≈ .3799
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Poisson Distribution
Binomial Approximation

λ = np
q = 1

E [X ] = np = λ
Var(X ) = npq = λ

E [X ] =
∞

∑
i=0

ie−λ λ i

i!

= λ
∞

∑
i=1

e−λ λ i−1

(i−1)!

= λe−λ
∞

∑
j=0

λ j

j!

= λe−λ eλ

= λ

E [X 2] =
∞

∑
i=0

i2e−λ λ i

i!

= λ
∞

∑
i=1

ie−λ λ i−1

(i−1)!

= λ
∞

∑
j=0

(j +1)e−λ λ j

j!

= λ




∞

∑
j=0

je−λ λ j

j!
+

∞

∑
j=0

e−λ λ j

j!




= λ (λ +1)

Var(X ) = E [X 2]−
(

E [X ]
)2

= λ
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Poisson Distribution

Computing the Poisson distribution function
Suppose that X ∼ Poisson(λ ). The key to computing its distribution
function

P{X ≤ i}=
i

∑
k=0

e−λ λ k

k !
i = 0,1,2, · · ·

is to start with P{X = 0} and then to compute P{X = k +1} from P{X =
k} using the relationship

P{X = k +1}= λ
k +1

P{X = k}
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Geometric Distribution

The Geometric Random Variable
Suppose that independent trials, each having a probability p, 0 < p < 1,
of being a success, are performed until a success occurs. If we let X
equal the number of trials required, then

P{X = i}= qi−1p q = 1−p, i = 1,2, · · ·

∞

∑
i=0

P{X = i}=
∞

∑
i=1

qi−1p

=
p

1−q

=
p
p

= 1

P{X ≤ i}=
i

∑
k=1

qk−1p

=
p−qip
1−q

=
p(1−qi)

p
= 1−qi
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Geometric Distribution
Example
An urn contains N white and M black balls. Balls are randomly selected,
one at a time, until a black one is obtained. If we assume that each
selected ball is replaced before the next one is drawn, what is the
probability that

1 exactly n draws are needed?
2 at least n draws are needed?

Let X denote the number of draws needed to select a black ball
X ∼ Geometric(p), p = M/(M +N), q = N/(M +N)

1 P{X = n}= qn−1p =

(
N

M +N

)n−1 M
M +N

=
MNn−1

(M +N)n

2 P{X ≥ n}=
∞

∑
k=n

qk−1p = qn−1 =

(
N

M +N

)n−1
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Geometric Distribution

E [X ] =
∞

∑
i=1

iqi−1p

=
∞

∑
i=1

(i−1+1)qi−1p

=
∞

∑
j=0

(j +1)qjp

=
∞

∑
j=0

jqjp+
∞

∑
j=0

qjp

= q
∞

∑
j=1

jqj−1p+
∞

∑
i=1

qi−1p

= qE [X ]+1
= 1/(1−q)

E [X ] = 1/p

E [X 2] =
∞

∑
i=1

i2qi−1p

=
∞

∑
i=1

(i−1+1)2qi−1p

=
∞

∑
j=0

(j +1)2qjp

=
∞

∑
j=0

j2qjp+2
∞

∑
j=0

jqjp+
∞

∑
j=0

qjp

= q
∞

∑
j=1

j2qj−1p+2q
∞

∑
j=1

jqj−1p+
∞

∑
i=1

qi−1p

= qE [X 2]+2qE [X ]+1
= (2q/p+1)/(1−q)

= (q+1)/p2

Var(X ) = E [X 2]−
(
E [X ]

)2
= q/p2
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