

Random Variables

We are often interested in a *function* of the outcome as opposed to the actual outcome (e.g., total sum of dice faces, number of coin tosses)

T

Definition

Random variables are real-valued functions defined on the sample space.

Suppose that we are tossing 3 fair coins. If we let Y denote the number of heads that appear, then Y is a random variable taking on one of the values 0, 1, 2, and 3 with respective probabilities

 $P\{Y=0\} = P\{(T,T,T)\} = \frac{1}{8}$ $P\{Y=1\} = P\{(T,T,H),(T,H,T),(H,T,T)\} = \frac{3}{8}$ $P\{Y=2\} = P\{(H,H,T),(H,T,H),(T,H,H)\} = \frac{3}{8}$ $P\{Y=3\} = P\{(H,H,H)\} = \frac{1}{8}$

Probability Theory: Discrete Random Variables	Expectation of a Function of a Random Variable	
Expectation of a Function	n of a Random Variable 🛛 🕌	
 We are given a discrete RV. A function g(X) is itself a di Its pmf can be determined f we can compute E[g(X)] by 	screte RV	
Example		
Compute $E[X^2]$, where X denotes a random variable that takes on any of the values -1, 0, and 1 with respective probabilities		
$P\{X=-1\}=.1$ $P\{$	$X = 0$ = .3 $P{X = 1} = .6$	
Let $Y = X^2$. The pmf of Y is give	en by	
$P{Y=1}=P{$	$X = -1\} + P\{X = 1\} = .7$	
$P\{Y=0\}=P\{$	X = 0 = .3	
Hence, $E[X^2] = E[$	Y] = 1(.7) + 0(.3) = .7	
©2022 Prof. Hicham Elmongui	9/40	

VarianceIs the expectation enough to summarize a distribution function? $Y = \begin{cases} -1 & \text{with probability } \frac{1}{2} \\ +1 & \text{with probability } \frac{1}{2} \end{cases}$ $Z = \begin{cases} -30 & \text{with probability } \frac{1}{4} \\ +10 & \text{with probability } \frac{3}{4} \end{cases}$ The expected value of a RV tells nothing about the variation, or spread, of its possible values.• We expect X to take on values around its mean $E[X]$ • To measuring the possible variation of X, we may look at how far apart X would be from its mean, on the average $E[X - \mu], \text{where } \mu = E[X]$ • It turns out to be mathematically inconvenient to deal with this quantity	Probability Theory: Discrete Random Variables	Variance			
$Y = \begin{cases} -1 & \text{with probability } \frac{1}{2} \\ +1 & \text{with probability } \frac{1}{2} \end{cases} \qquad Z = \begin{cases} -30 & \text{with probability } \frac{1}{4} \\ +10 & \text{with probability } \frac{3}{4} \end{cases}$ The expected value of a RV tells nothing about the variation, or spread, of its possible values. • We expect <i>X</i> to take on values around its mean <i>E</i> [<i>X</i>] • To measuring the possible variation of <i>X</i> , we may look at how far apart <i>X</i> would be from its mean, on the average $E[X - \mu], \qquad \text{where } \mu = E[X]$ • It turns out to be mathematically inconvenient to deal with this	Variance	<u> </u>			
The expected value of a RV tells nothing about the variation, or spread, of its possible values. • We expect <i>X</i> to take on values around its mean $E[X]$ • To measuring the possible variation of <i>X</i> , we may look at how far apart <i>X</i> would be from its mean, on the average $E[X - \mu]$, where $\mu = E[X]$ • It turns out to be mathematically inconvenient to deal with this	Is the expectation enough to sur	nmarize a distribution function?			
 of its possible values. We expect X to take on values around its mean E[X] To measuring the possible variation of X, we may look at how far apart X would be from its mean, on the average	$Y = \begin{cases} -1 & \text{with probability } \frac{1}{2} \\ +1 & \text{with probability } \frac{1}{2} \end{cases}$	$Z = \begin{cases} -30 & \text{with probability } \frac{1}{4} \\ +10 & \text{with probability } \frac{3}{4} \end{cases}$			
 To measuring the possible variation of X, we may look at how far apart X would be from its mean, on the average E[X - μ], where μ = E[X] It turns out to be mathematically inconvenient to deal with this 	· · · · · · · · · · · · · · · · · · ·				
	 To measuring the possible variation of X, we may look at how far apart X would be from its mean, on the average E[X - µ], where µ = E[X] It turns out to be mathematically inconvenient to deal with this 				
©2022 Prof. Hicham Elmongui 12 / 40					

Probability Theory: Discrete Random Variables	Variance
Examples	I
Example 1	
Calculate $Var(X)$ if X represents the	e outcome when a fair die is rolled.
$E[X^2] = 1^2 \left(\frac{1}{6}\right) + 2^2 \left(\frac{1}{6}\right) + 3^2 \left(\frac{1}{6}\right)$	$+4^2\left(\frac{1}{6}\right)+5^2\left(\frac{1}{6}\right)+6^2\left(\frac{1}{6}\right)=\frac{91}{6}$
$\operatorname{Var}(X) = E[X^2] - \left(E[X]\right)^2 = \frac{91}{6}$	$\left(\frac{7}{2}\right)^2 = \frac{35}{12}$
Example 2	
Calculate $\operatorname{Var}(Y)$ and $\operatorname{Var}(Z)$ if $Y = \begin{cases} -1 & \text{with probability } \frac{1}{2} \\ +1 & \text{with probability } \frac{1}{2} \end{cases}$	$Z = \begin{cases} -30 & \text{with probability } \frac{1}{4} \\ +10 & \text{with probability } \frac{3}{4} \end{cases}$
$E[Y^2] = (-1)^2 \left(\frac{1}{2}\right) + 1^2 \left(\frac{1}{2}\right) = 1$	$E[Z^2] = (-30)^2 \left(\frac{1}{4}\right) + 10^2 \left(\frac{3}{4}\right) = 300$
$Var(Y) = 1 - 0^2 = 1$ V	$ar(Z) = 300 - 0^2 = 300$
©2022 Prof. Hicham Elmongui	14 / 40

Probability Theory: Discrete Random Variables	Variance
Variance of a Linear Function of	a RV 🛛 🕌
If <i>a</i> and <i>b</i> are constants, then $Var(aX + b) = a^2V$	$\operatorname{ar}(X)$
Proof	
Let $\mu = E[X]$ and $Y = aX + b$, then E[Y] = E[aX + b] = aE[X] Therefore, Var(aX + b) = Var(Y) $= E\left[(Y - E[Y])^2\right]$ $= E\left[((aX + b) - (aX - bX)^2\right]$ $= a^2 E\left[(X - a\mu)^2\right]$	$\left[a\mu+b ight]^{2} ight]=E\left[a^{2}(X-\mu)^{2} ight]$
©2022 Prof. Hicham Elmongui	15 / 40

Probability Theory: Discrete Random Variables	Variance
Standard Deviation of a RV	I
Definition	
The square root of the $Var(X)$ is called the <i>standard deviation</i> of we denote it by $SD(X)$.	of X, and
$\mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)}$	
©2022 Prof. Hicham Elmongui	16 / 40

Bernoulli Distribution

The Bernoulli Random Variable

• Suppose that a trial, or an experiment, whose outcome can be classified as either a *success* or a *failure* is performed

on Discrete Probability Dist

Common Discrete Probability Distri

<u>.</u>

butions

L

• A Bernoulli RV, X, with parameter p has the following pmf $p(1) = P\{X = 1\} = p$

$$p(1) = P\{X = 0\} = p$$

 $p(0) = P\{X = 0\} = q = 1 - p$

where $p, 0 \le p \le 1$, is the probability that the trial is a success

$$E[X] = 0 \times (1-p) + 1 \times p$$

$$= p$$

$$E[X^2] = 0^2 \times (1-p) + 1^2 \times p$$

$$= p$$

$$Var(X) = E[X^2] - (E[X])^2$$

$$= p - p^2$$

$$= p(1-p)$$

$$= pq$$

Binomial Distribution

The Binomial Random Variable

- Suppose that *n* independent trials, each of which is a Bernoulli trial with parameter *p*, are to be performed.
- If X represents the number of successes that occur in the *n* trials, then X is said to be a *binomial RV* with parameters (*n*,*p*). Its pmf is

$$p(i) = \binom{n}{i} p^{i} (1-p)^{n-i} \qquad i = 0, 1, \cdots, n$$

$$\sum_{i=0}^{\infty} p(i) = \sum_{i=0}^{n} {n \choose i} p^{i} (1-p)^{n-i}$$

= $(p + (1-p))^{n}$
= 1^{n}
= 1

n Discrete Probability Dis

Common Discrete Probability Distri

I

Binomial Distribution

It is known that screws produced by a certain company will be defective with probability .01, independently of each other. The company sells the screws in packages of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defective. What proportion of packages sold must the company replace?

Solution

If X is the number of defective screws in a package, then X is a binomial RV with parameters (10, .01). $P\{X > 1\} = 1 - P\{X = 0\} - P\{X = 1\}$

$$= 1 - {10 \choose 0} (.01)^0 (.99)^{10} - {10 \choose 1} (.01)^1 (.99)^9$$

= .004

Thus, only .4 percent of the packages will have to be replaced.

2022 Prof. Hicham Elmongui

Binomial Distribution

A communication system consists of *n* components, each of which will, independently, function with probability *p*. The total system will be able to operate effectively if at least one-half of its components function. For what values of *p* is a 5-component system more likely to operate effectively than a 3-component system?

Solution

The number of functioning components is a binomial RV with parameters (n,p). The 5-component system is better if

$$\begin{split} & P\{\text{effective 5-comp. sys.}\} > P\{\text{effective 3-comp. sys.}\}\\ & \binom{5}{3}p^3(1-p)^2 + \binom{5}{4}p^4(1-p) + p^5 > \binom{3}{2}p^2(1-p) + p^3 \\ & \text{which reduces to} \\ & 3(p-1)^2(2p-1) > 0 \qquad \Rightarrow p > \frac{1}{2} \end{split}$$

Probability Theory: Discrete Random Variables
 Common Discrete Probability Distributions

 Binomial Distribution
 Image: Common Discrete Probability Distribution

$$E[X^k] = \sum_{i=0}^n i^k {n \choose i} p^i q^{n-i}$$
 $Y \sim \text{Binomial}(n-1,p)$
 $= \sum_{i=1}^n i^k {n \choose i} p^i q^{n-i}$
 $= \sum_{i=1}^n i^k {n! \choose i!(n-i)!} p^i q^{n-i}$
 $= np \sum_{i=1}^n i^{k-1} {n! \choose (i-1)!(n-i)!} p^{i-1} q^{n-i}$
 $= np \sum_{i=1}^n i^{k-1} {n-1 \choose i-1} p^{i-1} q^{n-i}$
 $= np \sum_{i=1}^n i^{k-1} {n-1 \choose i-1} p^{i-1} q^{n-i}$
 $= np \sum_{i=1}^{n-1} (j+1)^{k-1} {n-1 \choose j} p^j q^{n-1-j}$
 $= npE \left[(Y+1)^{k-1} \right]$
 $= np - np^2$
 $= npE \left[(Y+1)^{k-1} \right]$
 $= np(1-p)$
 $= npqt$
 $= npqt$

Probability Theory: Discrete Random Variables	Common Discrete Probability Distributions	
Binomial Distribution	1	
Binomial RV as a sum of <i>n</i> ind	dependent identical Bernoulli RVs	
$X = X_1 + X_2 + \dots + X_n \qquad (X \sim B)$	inomial $(n, p), X_i \sim \text{Bernoulli}(p), \text{indep}.X_i$'s)	
$E[X] = E[X_1] + E[X_2] + \dots + E[X_n]$	$\operatorname{Var}(X) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \cdots + \operatorname{Var}(X_n)$	
$= \rho + \rho + \dots + \rho$	$= pq + pq + \dots + pq$	
= <i>np</i>	= npq	
Computing the binomial distribution function		
Suppose that $X \sim \text{Binomial}(n, p)$. The key to computing its distribution		
function		
$P\{X \le i\} = \sum_{k=0}^{i} {n \choose i} p^{i} (1-p)^{n-i} \qquad i = 0, 1, \cdots, n$		
is to start with $P{X = 0}$ and then to compute $P{X = k+1}$ from $P{X = k+1}$		
k} using the relationship		
$P\{X = k+1\} =$	$=\frac{p}{1-p}\frac{n-k}{k+1}P\{X=k\}$	
©2022 Prof. Hicham Elmonoui	30 / 40	

Potability Theory: Discrete Random Variable Poisson Distribution $\overbrace{}^{\text{Desson Distribution}}$ The Poisson Random Variable A random variable X that takes on one of the values $0, 1, 2, \cdots$ is said to be a Poisson random variable with parameter λ if, for some $\lambda > 0$, $p(i) = P\{X = i\} = e^{-\lambda} \frac{\lambda^i}{i!} \qquad i = 0, 1, 2, \cdots$ $\overbrace{_{i=0}^{\infty} p(i) = \sum_{i=0}^{\infty} e^{-\lambda} \frac{\lambda^i}{i!}}_{i=0} = e^{-\lambda} \sum_{i=0}^{\lambda} \frac{\lambda^i}{i!}}_{i}}_{i=0} = e^{-\lambda} e^{\lambda} \frac{\lambda^i}{i!}}_{i=0}$

Poisson Distribution

Poisson RV as an approximation to binomial RV

The Poisson RV with parameter $\lambda = np$ may be used as an approximation for a binomial RV with parameters (n, p) when *n* is large and *p* is small enough so that *np* is of moderate size.

n Discrete Probability Dis

$$P\{X = i\} = {n \choose i} p^{i} (1-p)^{n-i}$$

$$= \frac{n!}{(n-i)!i!} \left(\frac{\lambda}{n}\right)^{i} \left(1-\frac{\lambda}{n}\right)^{n-i}$$

$$= \frac{n(n-1)\cdots(n-i+1)}{n^{i}} \times \frac{\lambda^{i}}{i!} \times \frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{i}}$$
for large *n*, small *p*, moderate *np*

$$\approx 1 \times \frac{\lambda^{i}}{i!} \times \frac{e^{-\lambda}}{1} = e^{-\lambda} \frac{\lambda^{i}}{i!}$$

n Discrete Probability Dist

Poisson Distribution

Р

022 Prof. Hicham Elmongui

Example 3

Consider an experiment that consists of counting the number of α particles given off in a 1-second interval by 1 gram of radioactive material. If we know from past experience that, on the average, 3.2 such α particles are given off, what is a good approximation to the probability that no more than 2 α particles will appear?

- Think of the gram of radioactive material as consisting of a large number *n* of atoms, each of which has probability of 3.2/n of disintegrating and sending off an α particle during the second considered
- The number of α particles given off will be a Poisson random variable with parameter $\lambda = 3.2$

$$\{X \le 2\} = e^{-3.2} + 3.2e^{-3.2} + \frac{3.2^2}{2}e^{-3.2}$$

\$\approx .3799\$

Poisson Distribution

22 Prof. Hicham Elm

Computing the Poisson distribution function Suppose that $X \sim Poisson(\lambda)$. The key to computing its distribution function

Common Discrete Probability Distributions

L

37 / 40

$$P\{X \le i\} = \sum_{k=0}^{l} \frac{e^{-\lambda} \lambda^k}{k!}$$
 $i = 0, 1, 2, \cdots$

is to start with $P{X = 0}$ and then to compute $P{X = k+1}$ from $P{X = k}$ using the relationship

$$P\{X=k+1\}=\frac{\lambda}{k+1}P\{X=k\}$$

Geometric Distribution

The Geometric Random Variable

Suppose that independent trials, each having a probability p, 0 , of being a success, are performed until a success occurs. If we let <math>X equal the number of trials required, then

Common Discrete Probability Distr

utions

L

Probability Theory: Discrete Random Variables	Common Discrete Probability Distributions	Prot
Geometric Distribution	J	G
Example		E
one at a time, until a black one is	ck balls. Balls are randomly selected, obtained. If we assume that each he next one is drawn, what is the	
exactly <i>n</i> draws are needed?at least <i>n</i> draws are needed?		
• Let X denote the number of dra		
• $X \sim \text{Geometric}(p), p = M/k$		
• $P{X=n}=q^{n-1}p=\left(\frac{N}{M+N}\right)$	$\int_{M-1}^{M-1} \frac{M}{M+N} = \frac{MN^{n-1}}{(M+N)^n}$	
• $P{X = n} = q^{n-1}p = \left(\frac{N}{M+N}\right)$ • $P{X \ge n} = \sum_{k=n}^{\infty} q^{k-1}p = q^{n-1} = q^{n-1}$	$=\left(\frac{N}{M+N}\right)^{n-1}$	E
©2022 Prof. Hicham Elmongui	39 / 40	©2

26/27 Produbility Tierger E Random Variables
Common Discrete Probability Distributions

$$E[X] = \sum_{i=1}^{\infty} iq^{i-1}p$$

$$= \sum_{i=1}^{\infty} (i-1+1)q^{i-1}p$$

$$= \sum_{j=0}^{\infty} (j+1)q^{j}p$$

$$= \sum_{j=0}^{\infty} jq^{j}p + \sum_{j=0}^{\infty} q^{j}p$$

$$= q \sum_{j=1}^{\infty} jq^{j-1}p + \sum_{i=1}^{\infty} q^{i-1}p$$

$$= qE[X] + 1$$

$$= 1/(1-q)$$

$$E[X] = 1/p$$

$$E[X] = 1/p$$